Self-Organized Criticality and Homeostasis in Atmospheric Convective Organization

Yano, Jun-Ichi ; Liu, C. ; Moncrieff, M. W.

Année de publication
2012

Atmospheric convection has a tendency to organize on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden–Julian oscillation. The present paper examines two major competing mechanisms of self-organization in a cloud-resolving model (CRM) simulation from a phenomenological thermodynamic point of view. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with increasing column-integrated water, reminiscent of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as CRM experiments give mixed results. In this study, a CRM experiment over a large-scale domain with a constant sea surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms is further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes.

Texte intégral

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques