The North Atlantic Oscillation response to large-scale atmospheric anomalies in the north east Pacific
Drouard, Marie ; Rivière, Gwendal ; Arbogast, Philippe
Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it.
Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.
Accès à la notice sur le site du portail documentaire de Météo-France