The World is Not Flat: Implications for the Global Carbon Balance

Rotach, Mathias W. ; Wohlfahrt, Georg ; Hansel, Armin ; Reif, Matthias ; Wagner, Johannes ; Gohm, Alexander

Année de publication
2014

Among the processes contributing to the global CO2 budget, net uptake by the land surface bears the largest uncertainty. Therefore, the land sink is often estimated as the residual from the other terms that are known with greater certainty. On average over the last decades, the difference between modeled land surface uptake and this residual is negative, thus suggesting that the different modeling approaches miss an important part in land-atmosphere exchange. Based on experience with atmospheric modeling at high resolution, it is argued that this discrepancy is likely due to missed mesoscale (thermally or dynamically forced) circulations in complex terrain. Noting that more than 50% of the land surface qualifies as complex terrain, the contribution of mesoscale circulations is hypothesized to alleviate at least partly the uncertainty in the modeled land surface uptake. While atmospheric models at coarse resolution (e.g., for numerical weather prediction; also climate simulations) use a parameterization to account for momentum exchange due to subgrid-scale topography, no such additional exchange is presently taken into account for energy or mass. It is thus suggested that a corresponding parameterization should be developed in order to reduce the uncertainties in the global carbon budget.

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques