Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle
Mazoyer, Marie ; Lac, Christine ; Thouron, O. ; Bergot, Thierry ; Masson, Valéry ; Musson-Genon, L.
Large eddy simulations (LESs) of a radiation fog event occurring during the ParisFog experiment are studied with a view to analyse the impact of the dynamics of the boundary layer on the fog life cycle. The LES, performed with the Meso-NH model at 5m resolution horizontally and 1m vertically, and with a 2-moment microphysical scheme, includes the drag effect of a tree barrier and the deposition of droplets on vegetation. The model shows good agreement with measurements of near-surface dynamic and thermodynamic parameters and liquid water path. The blocking effect of the trees induces elevated fog formation, as actually observed, and horizontal heterogeneities during the formation. It also limits cooling and cloud water production. Deposition is found to exert the most significant impact on fog prediction as it not only erodes the fog near the surface but also modifies the fog life cycle and induces vertical heterogeneities. A comparison with the 2m horizontal resolution simulation reveals small differences, meaning that grid convergence is achieved. Conversely, increasing numerical diffusion through a wind advection operator of lower order leads to an increase in the liquid water path and has a very similar effect to removing the tree barrier. This study allows us to establish the major dynamical ingredients needed to accurately represent the fog life cycle at very high-resolution.
Accès à la notice sur le site du portail documentaire de Météo-France