Intégration de données satellitaires dans le modèle ISBA pour le suivi des céréales à paille pluviales et l'estimation de la Réserve Utile en eau du sol

Dewaele, Hélène

Auteur moral
Université Toulouse 3 Paul Sabatier : UT3 Paul Sabatier
Auteur moral
Calvet, Jean-Christophe ; Carrer, Dominique
Année de publication
2017

Le climat, les sols et les ressources en eau sont des facteurs essentiels de la production agricole et conditionnent la disponibilité des ressources alimentaires mondiales. La nécessité de quantifier, d'évaluer et de prédire les pressions exercées sur les ressources en eau et les ressources agricoles dans un contexte de changement climatique représente un enjeu majeur. Pour répondre à ces problématiques, des modèles numériques du fonctionnement des surfaces continentales sont développés. Ils permettent de simuler de nombreux processus naturels tels que le cycle de l'eau, du carbone, la croissance et la sénescence de la végétation, et les flux à l'interface sol-atmosphère. Ces outils puissants sont très largement utilisés par la communauté scientifique mais présentent de nombreuses incertitudes dans la représentation des différents processus biophysiques pris en compte et dans l'estimation des paramètres qui les pilotent. L'absence de données d'observation de variables clefs du cycle hydrologique ou de variables clefs de la végétation à grande échelle spatiale et temporelle est un frein majeur pour la validation de ces modèles. L'objectif général de ce travail de thèse est d'évaluer dans quelle mesure l'intégration de données satellitaires disponibles depuis une trentaine d'années dans un modèle générique des surfaces continentales permet de mieux représenter les sécheresses agricoles à différentes échelles spatiales. Le modèle ISBA-A-gs développé par le CNRM est utilisé. Il représente la variabilité interannuelle de la biomasse végétale en lien avec les ressources en eau du sol. Des études précédentes ont montré que les simulations du système sol-plante en condition de stress hydrique sont très sensibles à la valeur de la réserve utile du sol, et que la représentation par ce type de modèle de la variabilité interannuelle de la production des céréales à paille est difficile. Une méthodologie de calibration/validation du modèle basée sur l'intégration de séries temporelles satellitaires d'indice de surface foliaire (Leaf Area Index ou LAI) observées à 1km de résolution dans ISBA-A-gs a été développée afin d'estimer la réserve utile du sol pour des cultures de céréales à paille pluviales. Le LAI satellitaire est préalablement désagrégé pour les céréales à pailles. La validation de cette méthodologie est fondée sur la comparaison de la biomasse simulée et des rendements agricoles observés. Une méthode simple de modélisation inverse par minimisation d'une fonction coût a été confrontée à une méthode plus complexe : l'assimilation séquentielle de données. Cette dernière permet de combiner de manière optimale les séries temporelles de LAI observées et simulées par ISBA-A-gs afin de fournir une analyse du LAI, de la biomasse aérienne, et de l'humidité du sol. L'assimilation repose sur la chaîne LDAS-Monde développée par le CNRM. Elle donne des résultats plus réalistes que la modélisation inverse en terme de biomasse simulée et de réserve utile estimée. La représentation de l'impact négatif des sécheresses et des années très humides sur les rendements est améliorée grâce à cette méthode. Les réserves utiles obtenues sur les zones céréalières françaises ont permis la construction d'un modèle de régression linéaire simple permettant d'estimer les réserves utiles directement à partir des valeurs annuelles maximales de LAI satellitaires (LAImax). La cartographie de la réserve utile à partir du LAImax est comparée à la carte au millionième de l'INRA sur la France. La possibilité d'utiliser cette méthode à l'échelle locale est évaluée, ainsi que son extension à d'autres zones agricoles en Eurasie et en Amérique du Nord.

Texte intégral

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques