The Third Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System over the Tibetan Plateau and Its Effects

Zhao, Ping ; Xu, Xiangde ; Chen, Fei ; Guo, Xueliang ; Zheng, Xiangdong ; Liu, Liping ; Hong, Yang ; Li, Yueqing ; La, Zuo ; Peng, Hao ; Zhong, Linzhi ; Ma, Yaoming ; Tang, Shihao ; Liu, Yimin ; Liu, Huizhi ; Li, Yaohui ; Zhang, Qiang ; Hu, Zeyong ; Sun, Jihua ; Zhang, Shengjun ; Dong, Lixin ; Zhang, Hezhen ; Zhao, Yang ; Yan, Xiaolu ; Xiao, An ; Wan, Wei ; Liu, Yu ; Chen, Junming ; Liu, Ge ; Zhaxi, Yangzong ; Zhou, Xiuji

Année de publication
This paper presents the background, scientific objectives, experimental design, and preliminary achievements of the Third Tibetan Plateau (TP) Atmospheric Scientific Experiment (TIPEX-III) for 8-10 years. It began in 2013 and has expanded plateau-scale observation networks by adding observation stations in data-scarce areas; executed integrated observation missions for the land surface, planetary boundary layer, cloud-precipitation, and troposphere-stratosphere exchange processes by coordinating ground-based, air-based, and satellite facilities; and achieved noticeable progress in data applications. A new estimation gives a smaller bulk transfer coefficient of surface sensible heat over the TP, which results in a reduction of the possibly overestimated heat intensity found in previous studies. Summer cloud-precipitation microphysical characteristics and cloud radiative effects over the TP are distinguished from those over the downstream plains. Warm rain processes play important roles in the development of cloud and precipitation over the TP. The lower-tropospheric ozone maximum over the northeastern TP is attributed to the regional photochemistry and long-range ozone transports, and the heterogeneous chemical processes of depleting ozone near the tropopause might not be a dominant mechanism for the summer upper-tropospheric-lower-stratospheric ozone valley over the southeastern TP. The TP thermodynamic function not only affects the local atmospheric water maintenance and the downstream precipitation and haze events but also modifies extratropical atmospheric teleconnections like the Asia-Pacific Oscillation, subtropical anticyclones over the North Pacific and Atlantic, and temperature and precipitation over Africa, Asia, and North America. These findings provide new insights into understanding land-atmosphere coupled processes over the TP and their effects, improving model parameterization schemes, and enhancing weather and climate forecast skills.

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques