Urban haze in the North China Plain: Observations from NACMON

Dao, Xu ; Lin, Yu-Chi ; Cao, Fang ; Di, Shi-Ying ; Hong, Yihang ; Xing, Guanhua ; Li, Jianjun ; Fu, Pingqing ; Zhang, Yan-Lin

Introduction to the National Aerosol Chemical Composition Monitoring Network of China: Objectives, Current Status, and Outlook

Année de publication
2020

The North China Plain (NCP) is becoming one of the most polluted areas characterized by a high frequency of haze pollution. However, the spatial and temporal evolutions of aerosol chemical compositions in such a highly polluted region are not well understood due to the lack of a long-term and comprehensive observation-based network. China's National Aerosol Composition Monitoring Network (NACMON) has conducted comprehensive offline and online measurements of compositions and optical properties of airborne aerosols in order to systematically investigate the formation process, source apportionments of haze, and interactions between haze pollution and climate change. The objective of the observations is to provide information for policy makers to make strategies for the alleviation of haze occurrence. In this paper, we present instrumentations and methodologies as well as the preliminary results of the offline observations in NACMON stations over the NCP region. The implications and future perspectives of the network are also summarized. Benefiting from simultaneous observations from this network, we found that secondary aerosols were the dominant component in haze pollution. High anthropogenic emissions, low wind speed, and high relative humidity (RH) facilitated gas-to-particle transformation and resulted in high PM2.5 formation (PM2.5 is particulate matter that is smaller than 2.5 μm in diameter). Sulfate-dominant or nitrate-dominant aerosols during the haze period were driven by ambient RH. Moreover, the contributions of coal combustion and biomass burning to PM2.5 revealed downward trends, whereas secondary aerosols showed upward trends over the last decade. Thus, we highlighted that strict control of anthropogenic emissions of precursor gases, such as NOx, NH3, and volatile organic compounds (VOCs), will be an important way to decrease PM2.5 pollution in the NCP region.</p>

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques