Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica

Le Toumelin, Louis ; Amory, Charles ; Favier, Vincent ; Kittel, Christoph ; Hofer, Stefan ; Fettweis, Xavier ; Gallée, Hubert ; Kayetha, Vinay

Année de publication
<p align=justify>In order to understand the evolution of the climate of Antarctica, dominant processes that control surface and low-atmosphere meteorology need to be accurately captured in climate models. We used the regional climate model MAR (v3.11) at 10 km horizontal resolution, forced by ERA5 reanalysis over a 9-year period (2010-2018) to study the impact of drifting snow (designating here the wind-driven transport of snow particles below and above 2 m) on the near-surface atmosphere and surface in Adelie Land, East Antarctica. Two model runs were performed, one with and one without drifting snow, and compared to half-hourly in situ observations at D17, a coastal and windy location of Adelie Land. We show that sublimation of drifting-snow particles in the atmosphere drives the difference between model runs and is responsible for significant impacts on the near-surface atmosphere. By cooling the low atmosphere and increasing its relative humidity, drifting snow also reduces sensible and latent heat exchanges at the surface (−5.7 W m−2 on average). Moreover, large and dense drifting-snow layers act as near-surface cloud by interacting with incoming radiative fluxes, enhancing incoming longwave radiation and reducing incoming shortwave radiation in summer (net radiative forcing: 5.7 W m−2). Even if drifting snow modifies these processes involved in surface-atmosphere interactions, the total surface energy budget is only slightly modified by introducing drifting snow because of compensating effects in surface energy fluxes. The drifting-snow driven effects are not prominent near the surface but peak higher in the boundary layer (fourth vertical level, 12 m) where drifting-snow sublimation is the most pronounced. Accounting for drifting snow in MAR generally improves the comparison at D17, especially for the representation of relative humidity (mean bias reduced from −14.0 % to −0.7 %) and incoming longwave radiation (mean bias reduced from −20.4 W m−2 to −14.9 W m−2). Consequently, our results suggest that a detailed representation of drifting-snow processes is required in climate models to better capture the near-surface meteorology and surface-atmosphere interactions in coastal Adelie Land.</p>
Texte intégral

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques