Analog Ensemble Forecasting System for Low-Visibility Conditions over the Main Airports of Morocco

Alaoui, Badreddine ; Bari, Driss ; Bergot, Thierry ; Ghabbar, Yamna

Année de publication
<p align=justify>Low-visibility conditions (LVC) are a common cause of air traffic, road, and sailing fatalities. Forecasting those conditions is an arduous challenge for weather forecasters all over the world. In this work, a new decision support system is developed based on an analog ensemble (AnEn) method to predict LVC over 15 airports of Morocco for 24 forecast hours. Hourly forecasts from the AROME model of eight predictors were used to select the skillful analogs from 2016 to 2018. The verified hourly observations were used as members of the ensemble. The developed ensemble prediction system (EPS) was assessed over 1 year (2019) as a single-value forecast and as a probabilistic forecast. Results analysis shows that AnEn outperforms persistence and its best performances are perceived generally during night and early-morning lead times. From continuous verification analysis, AnEn forecasting errors are found to be location- and lead-time-dependent and become higher for low-visibility cases. AnEn draws an averaged Centered Root Mean Square Error of about 1500 m for all visibilities, 2000 m for fog and 1500 m for mist. As an EPS, AnEn is under-dispersive for all lead times and draws a positive bias for fog and mist events. For probabilistic verification analysis, AnEn visibility forecasts are converted to binary occurrences depending on a set of thresholds from 200 m to 6000 m by a step of 200 m. It is found that the averaged Heidke Skill Score for AnEn is 0.65 for all thresholds. However, AnEn performance generally becomes weaker for fog or mist events prediction.</p>
Texte intégral

puce  Accès à la notice sur le site du portail documentaire de Météo-France

  Liste complète des notices publiques