Global Carbon Budget 2023
Friedlingstein, Pierre ; O'Sullivan, Michael ; Jones, Matthew W. ; Andrew, Robbie M. ; Bakker, Dorothee C. E. ; Hauck, Judith ; Landschützer, Peter ; Le Quéré, Corinne ; Luijkx, Ingrid T. ; Peters, Glen P. ; Peters, Wouter ; Pongratz, Julia ; Schwingshackl, Clemens ; Sitch, Stephen ; Canadell, Josep G. ; Ciais, Philippe ; Jackson, Robert B. ; Alin, Simone R. ; Anthoni, Peter ; Barbero, Leticia ; Bates, Nicholas R. ; Becker, Meike ; Bellouin, Nicolas ; Decharme, Bertrand ; Bopp, Laurent ; Brasika, Ida Bagus Mandhara ; Cadule, Patricia ; Chamberlain, Matthew A. ; Chandra, Naveen ; Chau, Thi-Tuyet-Trang ; Chevallier, Frédéric ; Chini, Louise P. ; Cronin, Margot ; Dou, Xinyu ; Enyo, Kazutaka ; Evans, Wiley ; Falk, Stefanie ; Feely, Richard A. ; Feng, Liang ; Ford, Daniel J. ; Gasser, Thomas ; Ghattas, Josefine ; Gkritzalis, Thanos ; Grassi, Giacomo ; Gregor, Luke ; Gruber, Nicolas ; Gürses, Özgür ; Harris, Ian ; Hefner, Matthew ; Heinke, Jens ; Houghton, Richard A. ; Hurtt, George C. ; Iida, Yosuke ; Ilyina, Tatiana ; Jacobson, Andrew R. ; Jain, Atul ; Jarníková, Tereza ; Jersild, Annika ; Jiang, Fei ; Jin, Zhe ; Joos, Fortunat ; Kato, Etsushi ; Keeling, Ralph F. ; Kennedy, Daniel ; Klein Goldewijk, Kees ; Knauer, Jürgen ; Korsbakken, Jan Ivar ; Körtzinger, Arne ; Lan, Xin ; Lefèvre, Nathalie ; Li, Hongmei ; Liu, Junjie ; Liu, Zhiqiang ; Ma, Lei ; Marland, Greg ; Mayot, Nicolas ; McGuire, Patrick C. ; McKinley, Galen A. ; Meyer, Gesa ; Morgan, Eric J. ; Munro, David R. ; Nakaoka, Shin-Ichiro ; Niwa, Yosuke ; O'Brien, Kevin M. ; Olsen, Are ; Omar, Abdirahman M. ; Ono, Tsuneo ; Paulsen, Melf ; Pierrot, Denis ; Pocock, Katie ; Poulter, Benjamin ; Powis, Carter M. ; Rehder, Gregor ; Resplandy, Laure ; Robertson, Eddy ; Rödenbeck, Christian ; Rosan, Thais M. ; Schwinger, Jörg ; Séférian, Roland ; Smallman, T. Luke ; Smith, Stephen M. ; Sospedra-Alfonso, Reinel ; Sun, Qing ; Sutton, Adrienne J. ; Sweeney, Colm ; Takao, Shintaro ; Tans, Pieter P. ; Tian, Hanqin ; Tilbrook, Bronte ; Tsujino, Hiroyuki ; Tubiello, Francesco ; van der Werf, Guido R. ; van Ooijen, Erik ; Wanninkhof, Rik ; Watanabe, Michio ; Wimart-Rousseau, Cathy ; Yang, Dongxu ; Yang, Xiaojuan ; Yuan, Wenping ; Yue, Xu ; Zaehle, Sönke ; Zeng, Jiye ; Zheng, Bo
Accurate assessment of anthropogenic carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil <span class="inline-formula">CO<sub>2</sub></span> emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy statistics and cement production data, while emissions from land-use change (<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric <span class="inline-formula">CO<sub>2</sub></span> concentration is measured directly, and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual changes in concentration. The ocean <span class="inline-formula">CO<sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) is estimated with global ocean biogeochemistry models and observation-based <span class="inline-formula"><i>f</i></span><span class="inline-formula">CO<sub>2</sub></span> products. The terrestrial <span class="inline-formula">CO<sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>)<span id="page5304"/> is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as <span class="inline-formula">±1<i>?</i></span>.</p> <p align=justify>For the year 2022, <span class="inline-formula"><i>E</i><sub>FOS</sub></span> increased by 0.9 % relative to 2021, with fossil emissions at <span class="inline-formula">9.9±0.5</span> Gt C yr<span class="inline-formula"><sup>?1</sup></span> (<span class="inline-formula">10.2±0.5</span> Gt C yr<span class="inline-formula"><sup>-1</sup></span> when the cement carbonation sink is not included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was <span class="inline-formula">1.2±0.7</span> Gt C yr<span class="inline-formula"><sup>-1</sup></span>, for a total anthropogenic <span class="inline-formula">CO<sub>2</sub></span> emission (including the cement carbonation sink) of <span class="inline-formula">11.1±0.8</span> Gt C yr<span class="inline-formula"><sup>?1</sup></span> (<span class="inline-formula">40.7±3.2</span> Gt <span class="inline-formula">CO<sub>2</sub></span> yr<span class="inline-formula"><sup>?1</sup></span>). Also, for 2022, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was <span class="inline-formula">4.6±0.2</span> Gt C yr<span class="inline-formula"><sup>-1</sup></span> (<span class="inline-formula">2.18±0.1</span> ppm yr<span class="inline-formula"><sup>-1</sup></span>; ppm denotes parts per million), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> was <span class="inline-formula">2.8±0.4</span> Gt C yr<span class="inline-formula"><sup>?1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> was <span class="inline-formula">3.8±0.8</span> Gt C yr<span class="inline-formula"><sup>-1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">-0.1</span> Gt C yr<span class="inline-formula"><sup>-1</sup></span> (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric <span class="inline-formula">CO<sub>2</sub></span> concentration averaged over 2022 reached <span class="inline-formula">417.1±0.1</span> ppm. Preliminary data for 2023 suggest an increase in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> relative to 2022 of <span class="inline-formula">+1.1</span> % (0.0 % to 2.1 %) globally and atmospheric <span class="inline-formula">CO<sub>2</sub></span> concentration reaching 419.3 ppm, 51 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959-2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yr<span class="inline-formula"><sup>?1</sup></span> persist for the representation of annual to semi-decadal variability in <span class="inline-formula">CO<sub>2</sub></span> fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land <span class="inline-formula">CO<sub>2</sub></span> flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade.</p> <p>This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at <a href="https://doi.org/10.18160/GCP-2023">https://doi.org/10.18160/GCP-2023</a> (Friedlingstein et al., 2023).</p>
Accès à la notice sur le site du portail documentaire de Météo-France