Modélisation de l'évolution de la neige soufflée et évaluation de la variabilité spatiale induite
Haddjeri, Ange
Modeling of alpine blowing snow and evaluation of the induced spatial variability
Auteur moral
Université Toulouse 3 Paul Sabatier : UT3
Auteur moral
Dumont, Marie ; Lafaysse, Matthieu
Année de publication
2024
Le manteau neigeux est un composant essentiel du cycle hydrologique terrestre ainsi qu'un régulateur clé du climat. En dehors des régions polaires, c'est dans les montagnes que la neige est la plus répandue. La couverture neigeuse alpine est particulière et présente une grande variabilité spatiale et temporelle. Une connaissance précise de cette variabilité est primordiale pour l'approvisionnement en eau douce, la production d'hydroélectricité et la prévision des risques. L'observation et la simulation numérique sont des outils complémentaires pour prédire les évolutions de la couverture neigeuse. En France, le modèle de neige ISBA-Crocus fournit une évaluation quotidienne à grande échelle des conditions d'enneigement alpines. Les évolutions futures de ce système reposeront sur une résolution horizontale de 250 m, nécessaire pour mieux décrire la topographie des montagnes. Cette résolution requiert la représentation de processus de variabilité supplémentaires tels que le transport de neige par le vent. Aussi, l'évaluation spatiale de simulation d'enneigement alpine est encore un défi, du fait de la rareté des observations en zone de montagne et de la forte interaction entre les divers processus contribuant à la forte variabilité spatiale observée. Dans ce contexte, l'objectif de ce doctorat est de développer puis d'évaluer un nouveau système spatialisé de simulation de neige alpine, comprenant la simulation du transport de neige par le vent. L'accent sera mis sur les méthodes d'évaluation spatialisées utilisant des observations satellites, nécessaires à l'évaluation de ces systèmes. Dans la première partie, nous présentons l'élaboration et le développement du modèle de transport de neige par le vent SnowPappus. Ce modèle est couplé au système de simulation ISBA-Crocus et conçu pour être appliqué à des domaines 2D de simulation alpine couvrant de larges étendues spatiales et temporelles (toutes les chaînes de montagnes françaises et plusieurs années). Notre modèle SnowPappus simule l'occurrence de la neige soufflée, le flux de transport horizontal et le taux de sublimation de la neige en fonction du forçage atmosphérique et des paramètres de la surface de la neige. Secondement, nous confrontons des images satellites à nos simulations spatialisées réalisées avec le modèle de transport SnowPappus sur une région de 902 km² dans les Alpes françaises et trois saisons d'enneigement complètes. Les simulations de hauteur de neige sont comparées aux observations obtenues à partir des satellites de stéréo-imagerie Pléiades, ainsi que les dates de fonte simulées, confrontées aux observations des satellites optiques de Sentinel-2. La sensibilité des simulations spatiales à différents jeux de données de précipitations est également analysée. Nos résultats montrent que le modèle SnowPappus améliore la variabilité spatiale à haute altitude et à proximité des sommets et des crêtes. Notre étude illustre la nécessité de tenir compte des erreurs spatiales des forçages de précipitations ainsi de la variabilité sous-maille pour des évaluations spatiales de neige plus robustes. Enfin, nous testons et adaptons des méthodes de vérification Fuzzy (ou floues). Ces méthodes ont été développées pour l'évaluation de simulations atmosphériques et sont adaptées aux simulations de neige. Ces methodes d'évaluations ajoutent la possibilité d'évaluer l'adéquation spatiales entre les observations et les simulations. Bien que ces techniques de vérification Fuzzy permettent de mieux qualifier l'adéquation spatiale des simulations aux observations, elles ne permettent pas de démêler les compensations d'erreurs entre les erreurs de localisations et d'intensités, ce qui constitue de forte limitation à leur application. Les avancées de ce travail permettent d'identifier les points forts et les points faibles des simulations de neige alpine haute résolution ainsi que la valeur ajoutée d'une représentation explicite du transport de neige.</div>
Texte intégral
Accès à la notice sur le site du portail documentaire de Météo-France